第二節 直線與圓的交點坐標
直線與圓的交點坐標

假設直線 \(\displaystyle{ L }\) 和圓 \(\displaystyle{ C }\) 的方程分別為:

\(\displaystyle{ L }\): \(\displaystyle{y=mx+b\ldots \ldots \ldots \left( 1 \right) }\)

\(\displaystyle{ C }\): \(\displaystyle{{{x}^{2}}+{{y}^{2}}+Dx+Ey+F=0\ldots \ldots \ldots \left( 2 \right) }\)

那麼,求直線 \(\displaystyle{ L }\) 與圓 \(\displaystyle{ C }\) 的交點坐標,即求解上述聯立方程 \(\left( 1 \right) \) 和 \(\left( 2 \right) \) 的解 \(\displaystyle{x }\) 和 \(\displaystyle{ y }\),即得到交點的 \(\displaystyle{x }\) 坐標和 \(\displaystyle{ y }\) 坐標。

例1:求圓與直線交點的坐標。

求直線 \(\displaystyle{x+y=4 }\) 與圓 \(\displaystyle{{{x}^{2}}+{{y}^{2}}=10 }\) 的交點坐標。

解:建立聯立方程:

\(\displaystyle{ \left\{ \begin{align} & x+y=4\ldots \ldots \ldots \ldots (1) \\ & {{x}^{2}}+{{y}^{2}}=10\ldots \ldots \ldots (2) \\ \end{align} \right. }\)

將 (1) 轉化成 \(\displaystyle{ y=4-x }\),代入 (2) 中,化簡得: \(\displaystyle{{{x}^{2}}-4x+3=0 }\)

解得:\(\displaystyle{x=1 }\) 或 \(\displaystyle{ x=3 }\)

代入 (1) 中,得 \(\displaystyle{ \left\{ \begin{align} & x=1 \\ & y=3 \\ \end{align} \right. }\) 或 \(\displaystyle{ \left\{ \begin{align} & x=3 \\ & y=1 \\ \end{align} \right. }\)

\(\displaystyle{ \therefore }\) 直線與圓的交點的坐標為 \(\displaystyle{\left( 1,3 \right) }\) 和 \(\displaystyle{\left( 3,1 \right) }\)。

已知直線 \(\displaystyle{2x-3y-k=0 }\) 與圓 \(\displaystyle{{{x}^{2}}+{{y}^{2}}-4x+6y=0 }\) 相切,求常數 \(\displaystyle{ k }\) 的值。

解:建立聯立方程:

\(\displaystyle{ \left\{ \begin{align} & 2x-3y-k=0\ldots \ldots \ldots \ldots (1) \\ & {{x}^{2}}+{{y}^{2}}-4x+6y=0\ldots \ldots (2) \\ \end{align} \right. }\)

將 (1) 轉化成 \(\displaystyle{ y=\frac{2x-k}{3} }\),代入 (2) 中,化簡得:

\(\displaystyle{13{{x}^{2}}-4kx+\left( {{k}^{2}}-18k \right)=0 }\)

\(\displaystyle{ \because }\) 直線與該圓相切

\(\displaystyle{\therefore \Delta ={{\left( -4k \right)}^{2}}-4\times 13\times \left( {{k}^{2}}-18k \right)=0 }\)

化簡得: \(\displaystyle{k\left( k-26 \right)=0 }\)

\(\displaystyle{\therefore k=0 }\) 或 \(\displaystyle{ k=26 }\)

如右圖所示,\(\displaystyle{ k=0 }\) 或 \(\displaystyle{ k=26 }\) 時,直線與圓相切。

已知直線 \(\displaystyle{y=3x+1 }\) 與圓 \(\displaystyle{{{\left( x-6 \right)}^{2}}+{{\left( y+1 \right)}^{2}}=k }\) 相離,求常數 \(\displaystyle{k }\) 的取值範圍。

解:建立聯立方程:

\(\displaystyle{ \left\{ \begin{align} & y=3x+1\ldots \ldots \ldots \ldots \ldots \ldots (1) \\ & {{\left( x-6 \right)}^{2}}+{{\left( y+1 \right)}^{2}}=k\ldots \ldots (2) \\ \end{align} \right. }\)

將 (1) 代入 (2) 中,化簡得:

\(\displaystyle{10{{x}^{2}}+40-k=0 \ \ldots \ldots \ldots \ldots (3) }\)

\(\displaystyle{ \because }\) 直線與圓相離

\(\displaystyle{ \therefore }\) 方程 (3) 的判別式 \(\displaystyle{\Delta =-4\times 10\times (40-k) \lt 0 }\)

\(\displaystyle{ \because }\) 常數 \(\displaystyle{k }\) 表示圓的半徑的平方數

\(\displaystyle{ \therefore k \gt 0 }\)

\(\displaystyle{ \therefore 0 \lt k \lt 40 }\) ( 結果如右圖所示 )

上一節
返回