第二節 複數的除法
複數的除法

複數的除法很特別。下面我們會詳細描述運算的步驟。

例如

我們要計算 \(\displaystyle{\frac{2 - i}{1 + 3i}}\)。

以分母的共軛複數,即 \(1 - 3i\),乘數式的分子和分母:

 

 \(= (\displaystyle{\frac{2 - i}{1 + 3i}})(\displaystyle{\frac{1 - 3i}{1 - 3i}})\)

 

 \(= \displaystyle{\frac{(2 - i)(1 - 3i)}{(1 + 3i)(1 - 3i)}}\)

利用分配律乘出:

 \(= \displaystyle{\frac{(2 - 6i - i + 3i^2)}{1^2 + 3^2}}\)

代入 \(i^2 = -1\) 及解化算式:    

 \(= \displaystyle{\frac{-1 - 7i}{10}}\)

 

 \(= -\displaystyle{\frac{1}{10}} - \displaystyle{\frac{7}{10}}i\)

\(\therefore \qquad\)\(\displaystyle{\frac{2 - i}{1 + 3i}} = -\displaystyle{\frac{1}{10}} - \displaystyle{\frac{7}{10}}i\)


複數除法的練習

請以分母的共軛複數開始,依次填寫下列各題的空格:

\(\displaystyle{\frac{1}{3 + 4i}}\)
\(= (\displaystyle{\frac{1}{3 + 4i}})(\)
+ \(\; i\)
+ \(\; i\)
\()\)
\(= \)
+ \(\; i\)
\(= \)
\(+ \)
\(i \)
\(\displaystyle{\frac{3 - i}{2 + 3i}}\)
\(= (\displaystyle{\frac{3 - i}{2 + 3i}})(\)
+ \(\; i\)
+ \(\; i\)
\()\)
\(= \)
+ \(\; i\) + \(\; i^2 \)
\(^2\) + \(^2\)
\(= \)
+ \(\; i\)
\(\displaystyle{\frac{2 - 3i}{4 - 3i}}\)
\(= (\displaystyle{\frac{2 - 3i}{4 - 3i}})(\)
+ \(\; i\)
+ \(\; i\)
\()\)
\(= \)
+ \(\; i\) + \(\; i^2 \)
\(^2\) + \(^2\)
\(= \)
+ \(\; i\)

上一節
返回