複數的除法很特別。下面我們會詳細描述運算的步驟。
我們要計算 \(\displaystyle{\frac{2 - i}{1 + 3i}}\)。
以分母的共軛複數,即 \(1 - 3i\),乘數式的分子和分母:
\(= (\displaystyle{\frac{2 - i}{1 + 3i}})(\displaystyle{\frac{1 - 3i}{1 - 3i}})\) |
|
\(= \displaystyle{\frac{(2 - i)(1 - 3i)}{(1 + 3i)(1 - 3i)}}\) |
|
利用分配律乘出: |
\(= \displaystyle{\frac{(2 - 6i - i + 3i^2)}{1^2 + 3^2}}\) |
代入 \(i^2 = -1\) 及解化算式: |
\(= \displaystyle{\frac{-1 - 7i}{10}}\) |
\(= -\displaystyle{\frac{1}{10}} - \displaystyle{\frac{7}{10}}i\) |
\(\therefore \qquad\)\(\displaystyle{\frac{2 - i}{1 + 3i}} = -\displaystyle{\frac{1}{10}} - \displaystyle{\frac{7}{10}}i\)。
請以分母的共軛複數開始,依次填寫下列各題的空格:
\(\displaystyle{\frac{1}{3 + 4i}}\) |
|
|
|
||||||||||||||||||
\(\displaystyle{\frac{3 - i}{2 + 3i}}\) |
|
|
|
||||||||||||||||||
\(\displaystyle{\frac{2 - 3i}{4 - 3i}}\) |
|
|
|
||||||||||||||||||