藉由在特定的溫度和壓強下氣體的摩爾體積 \(V_m\),可將氣體的體積 \(V\) 與它的摩爾數 \(n\) 進行換算:
\[n=\frac{V}{V_m} \]在常溫常壓下,\(5.0 \text{ m}^3\) 氧的摩爾數是多少? (常溫常壓下,氣體的摩爾體積 \(= 24 \text{ dm$^3$ mol$^{−1}$}\))
題解:
\[V(\ce{O2})= 5.0 \text{ m}^3 = 5000 \text{ dm}^3\] \[\begin{align} \therefore \; {n(\ce{O2})} & = \frac{V(\ce{O2})}{V_m} \\ & = \frac{5000 \text{ dm}^3}{24 \text{ dm$^3$ mol$^{-1}$}} \\ & = 208.3 \text{ mol} \end{align}\]在常溫常壓下,\(0.190 \text{ mol}\) 氯的體積是多少?(常溫常壓下,氣體的摩爾體積 \(= 24 \text{ dm$^3$ mol$^{−1}$}\))
題解:
\[\begin{align} V(\ce{Cl2}) & = n(\ce{Cl2}) \times {V_m} \\ & = 0.190 \text{ mol} \times 24 \text{ dm$^3$ mol$^{−1}$} \\ & = 4.56 \text{ dm}^3 \end{align}\]