第三節 摩爾數和粒子數的換算
由摩爾數計算粒子數

由於 \(1 \text{ mol}\) 任何純物質 (或物種) 所含化學式單位的數目是 \(6.02 \times 10^{23}\) 個,因此,任何純物質 (或物種) 的數目 \(N\) 與它的摩爾數 \(n\),都可按以下公式進行換算:

\[n = \frac{N}{L}\]

其中,\(L = 6.02 \times 10^{23} \text{ mol}^{-1}\)。

例題一

\(1.50 \text{ mol}\) 銅中,含有多少個銅原子?


題解:

\(\because\) 銅 (\(\ce{Cu}\)) 是由銅原子構成的,一個化學式單位即是一個原子,

\(\begin{align} \therefore \; N(\ce{Cu}) & = n(\ce{Cu}) \times L \\ & = 1.50 \text{ mol} \times 6.02 \times 10^{23} \text{ mol}^{-1}\\ & = 9.03 \times 10^{23} \end{align}\)

例題二

\(0.75 \text{ mol}\) 五水合硫酸銅(II) (\(\ce{CuSO4.5H2O}\)) 中,含有多少個結晶水?


題解:

\(\because\) 一個五水合硫酸銅(II) (\(\ce{CuSO4.5H2O}\)) 單位式中含有 \(5\) 個結晶水,

\(\begin{align} \therefore \; N(\ce{H2O}) & = n(\ce{CuSO4.5H2O}) \times 5 \times L \\ & = 0.75 \text{ mol} \times 5 \times 6.02 \times 10^{23} \text{ mol}^{-1}\\ & = 2.26 \times 10^{24} \end{align}\)

由粒子數計算摩爾數

若已知粒子數目,亦可以計算出物質的摩爾數。

例題三

多少摩爾氫中,含有 \(3.01 \times 10^{24}\) 個氫分子?


題解:

\(\begin{align} n(\ce{H2}) & = \frac{N(\ce{H2})}{L} \\ & = \frac{3.01 \times 10^{24}}{6.02 \times 10^{23} \text{ mol}^{-1}}\\ & = 5.00 \text{ mol} \end{align}\)

例題四

多少摩爾氧化鎂 (\(\ce{MgO}\)) 中,含有 \(1.81 \times 10^{24}\) 個鎂離子?


題解:

\(\because\) \(1\) 個 \(\ce{MgO}\) 式單位中含有 \(1\) 個 \(\ce{Mg}^{2+}\),

\(\begin{align} n(\ce{MgO}) & = n(\ce{Mg}^{2+}) \\ & = \frac{N(\ce{Mg}^{2+})}{L} \\ & = \frac{1.81 \times 10^{24}}{6.02 \times 10^{23} \text{ mol}^{-1}}\\ & = 3.01 \text{ mol} \end{align}\)

例題五

多少摩爾辛烷 (\(\ce{C8H18}\)) 中,含有 \(1.00 \times 10^{23}\) 個氫原子?


題解:

\(\because\) \(1\) 個 \(\ce{C8H18}\) 中含有 \(18\) 個 \(\ce{H}\),

\(\therefore \; n(\ce{H}) = 18 \times n(\ce{C8H18})\)

\(\begin{align} \because \; n(\ce{H}) = \frac{N(\ce{H})}{L} \\ \text{即} \; 18 \times n(\ce{C8H18}) & = \frac{N(\ce{H})}{L}\\ \therefore \; n(\ce{C8H18}) & = \frac{N(\ce{H})}{18 \times L}\\ & = \frac{1.00 \times 10^{23}}{18 \times 6.02 \times 10^{23} \text{ mol}^{-1}}\\ & = 9.23 \times 10^{-3} \text{ mol} \end{align}\)

上一節
返回